MORE EXAMPLES FOR SECTION 1.6

Example 1. $y^{\prime}=y+e^{2 x}$.
Solution. We first transform this equation into the form $y^{\prime}+p(x) y=q(x)$.

$$
y^{\prime}-y=e^{2 x} .
$$

Then $p(x)=-1$, and $q(x)=e^{2 x}$. So the integrating factor is

$$
I(x)=e^{\int p(x) d x}=e^{-x} .
$$

This gives

$$
\left(e^{-x} y\right)^{\prime}=e^{x} \Longrightarrow e^{-x} y=\int e^{x} d x+C \Longrightarrow y=e^{2 x}+C e^{x}
$$

Example 2. $x d y=\left(x^{2}-y\right) d x$.

Solution. As in the previous example, we transform this equation into the form $y^{\prime}+p(x) y=q(x)$.

$$
y^{\prime}+\frac{1}{x} y=x, \quad p(x)=\frac{1}{x}, \quad q(x)=x .
$$

As computed in an example given today, the integration factor is

$$
I(x)=e^{\int p(x) d x}=x .
$$

Then we have

$$
(x y)^{\prime}=x^{2} \Longrightarrow x y=\int x^{2} d x+C \Longrightarrow y=\frac{x^{2}}{3}+\frac{C}{x}
$$

Example 3. $x y^{\prime}+2 y=4 \cos x$
(This example was covered during the lecture for Section 144)
Solution. W transform this equation into the form $y^{\prime}+p(x) y=q(x)$ and obtain

$$
y^{\prime}+\frac{2}{x} y=\frac{4 \cos x}{x}, \quad p(x)=\frac{2}{x}, \quad q(x)=\frac{4 \cos x}{x} .
$$

So the integration factor is

$$
I(x)=e^{\int p(x) d x}=e^{\int \frac{2}{x} d x}=e^{\ln x^{2}}=x^{2}
$$

Then we have
$\left(x^{2} y\right)^{\prime}=4 x \cos x \Longrightarrow x^{2} y=\int 4 x \cos x d x+C \Longrightarrow y=\frac{4 \sin x}{x}+\frac{4 \cos x}{x^{2}}+\frac{C}{x^{2}}$.
While evaluating the integral $\int 4 x \cos x d x$, we have used the integration by parts:

$$
\int 4 x \cos x d x=4 x \sin x-4 \int \sin x d x=4 x \sin x+4 \cos x+C
$$

